Aurora - Aurora Borealis Finland

An aurora is a natural light display in the sky, predominantly seen in the high latitude (Arctic and Antarctic) regions. Auroras are produced when the magnetosphere is sufficiently disturbed by the solar wind that the trajectories of charged particles in both solar wind and magnetospheric plasma, mainly in the form of electrons and protons, precipitate them into the upper atmosphere (thermosphere/exosphere), where their energy is lost. The resulting ionization and excitation of atmospheric constituents emits light of varying colour and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles. Precipitating protons generally produce optical emissions as incident hydrogen atoms after gaining electrons from the atmosphere. Proton auroras are usually observed at lower latitudes. Different aspects of an aurora are elaborated in various sections below.




Occurrence of terrestrial auroras

Most auroras occur in a band known as the auroral zone, which is typically 3° to 6° wide in latitude and between 10° and 20° from the geomagnetic poles at all local times (or longitudes), most clearly seen at night against a dark sky. A region that currently displays an aurora is called the auroral oval, a band displaced towards the nightside of the Earth. Day-to-day positions of the auroral ovals are posted on the internet. A geomagnetic storm causes the auroral ovals (north and south) to expand, and bring the aurora to lower latitudes. Early evidence for a geomagnetic connection comes from the statistics of auroral observations. Elias Loomis (1860), and later Hermann Fritz (1881) and S. Tromholt (1882) in more detail, established that the aurora appeared mainly in the "auroral zone", a ring-shaped region with a radius of approximately 2500 km around the Earth's magnetic pole. It was hardly ever seen near the geographic pole, which is about 2000 km away from the magnetic pole. The instantaneous distribution of auroras ("auroral oval") is slightly different, being centered about 3â€"5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest toward the equator when the magnetic pole in question is in between the observer and the Sun. The aurora can be seen best at this time, which is called magnetic midnight.

In northern latitudes, the effect is known as the aurora borealis (or the northern lights), named after the Roman goddess of dawn, Aurora, and the Greek name for the north wind, Boreas, by Galileo in 1619. Auroras seen within the auroral oval may be directly overhead, but from farther away they illuminate the poleward horizon as a greenish glow, or sometimes a faint red, as if the Sun were rising from an unusual direction.

Its southern counterpart, the aurora australis (or the southern lights), has features that are almost identical to the aurora borealis and changes simultaneously with changes in the northern auroral zone. It is visible from high southern latitudes in Antarctica, South America, New Zealand, and Australia. Auroras also occur on other planets. Similar to the Earth's aurora, they are also visible close to the planets’ magnetic poles. Auroras also occur poleward of the auroral zone as either diffuse patches or arcs, which can be sub-visual.

Auroras are occasionally seen in latitudes below the auroral zone, when a geomagnetic storm temporarily enlarges the auroral oval. Large geomagnetic storms are most common during the peak of the eleven-year sunspot cycle or during the three years after the peak. An aurora may appear overhead as a "corona" of rays, radiating from a distant and apparent central location, which results from perspective. An electron spirals (gyrates) about a field line at an angle that is determined by its velocity vectors, parallel and perpendicular, respectively, to the local geomagnetic field vector B. This angle is known as the “pitch angle” of the particle. The distance, or radius, of the electron from the field line at any time is known as its Larmor radius. The pitch angle increases as the electron travels to a region of greater field strength nearer to the atmosphere. Thus it is possible for some particles to return, or mirror, if the angle becomes 90 degrees before entering the atmosphere to collide with the denser molecules there. Other particles that do not mirror enter the atmosphere and contribute to the auroral display over a range of altitudes. Other types of auroras have been observed from space, e.g."poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. There are other interesting effects such as flickering aurora, "black aurora" and sub-visual red arcs. In addition to all these, a weak glow (often deep red) observed around the two polar cusps, the field lines separating the ones that close through the Earth from those that are swept into the tail and close remotely.

Images

The altitudes where auroral emissions occur were revealed by Carl Størmer and his colleagues who used cameras to triangulate more than 12,000 auroras. They discovered that most of the light is produced between 90 and 150 km above the ground, while extending at times to more than 1000 km. Images of auroras are significantly more common today than in the past due to the increase in use of digital cameras that have high enough sensitivities. Film and digital exposure to auroral displays is fraught with difficulties, particularly if faithfulness of reproduction is an objective. Due to the different color spectrum present, and the temporal changes occurring during the exposure, the results are somewhat unpredictable. Different layers of the film emulsion respond differently to lower light levels, and choice of film can be very important. Longer exposures superimpose rapidly changing features, and often blanket the dynamic attribute of a display. Higher sensitivity creates issues with graininess.

The aurora frequently appears either as a diffuse glow or as "curtains" that extend approximately in the east-west direction. At some times, they form "quiet arcs"; at others ("active aurora"), they evolve and change constantly. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field, consistent with auroras being shaped by Earth's magnetic field. In-situ particle measurements confirm that auroral electrons are guided by the geomagnetic field, and spiral around them while moving toward Earth. The similarity of an auroral display to curtains is often enhanced by folds within the arcs.

David Malin pioneered multiple exposure using multiple filters for astronomical photography, recombining the images in the laboratory to recreate the visual display more accurately. For scientific research, proxies are often used, such as ultra-violet, and color-correction to simulate the appearance to humans. Predictive techniques are also used, to indicate the extent of the display, a highly useful tool for aurora hunters. Terrestrial features often find their way into aurora images, making them more accessible and more likely to be published by major websites. It is possible to take excellent images with standard film (using ISO ratings between 100 and 400) and a single-lens reflex camera with full aperture, a fast lens (f1.4 50 mm, for example), and exposures between 10 and 30 seconds, depending on the aurora's brightness.

Early work on the imaging of the auroras was done in 1949 by the University of Saskatchewan using the SCR-270 radar.

0 comments: